Improving the Efficiency of Fast Using Semantic Similarity Algorithm
نویسندگان
چکیده
A Feature selection for the high dimensional data clustering is a difficult problem because the ground truth class labels that can guide the selection are unavailable in clustering. Besides, the data may have a broad number of features and the irrelevant ones can run the clustering. A novel feature weighting scheme is proposed, in which the weight for each feature is a measure of its contribution to the clustering task. A well defined objective function is given, which can be explicitly solved in an iterative way. A fast clustering-based feature selection algorithm (FAST) works in two steps. In the first step, graph-theoretic clustering methods are used to divide the features into clusters. In second step, the most nearest feature that is completely related to destination is chosen from each cluster to design a subset of features. Features in each cluster are independent. Efficiency of FAST is measured by using Minimum Spanning Tree (MST). Accuracy of image comparison is efficient by using semantic similarity algorithm.
منابع مشابه
Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملImproving Fast Charging Methods Using Genetic Algorithm and Coordination between Chargers in Fast Charging Station of Electric Vehicles in Order to Optimal Utilization of Power Capacity of Station
Fast charging stations are one of the most important section in smart grids with high penetration of electric vehicles. One of the important issues in fast chargers is choosing the proper method for charging. In this paper, by defining an optimization problem with the objective of reducing the charging time, the optimal charging levels are obtained using a multi-stage current method using a gen...
متن کاملA procedure for Web Service Selection Using WS-Policy Semantic Matching
In general, Policy-based approaches play an important role in the management of web services, for instance, in the choice of semantic web service and quality of services (QoS) in particular. The present research work illustrates a procedure for the web service selection among functionality similar web services based on WS-Policy semantic matching. In this study, the procedure of WS-Policy publi...
متن کاملImproving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT
Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014